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Abstract. We analyse the hysteresis enlargements of an optical bistable system involving three dynamical
variables. We investigate, both experimentally and numerically, the local dynamics of the up- and down-
switching process versus the sweeping frequency Ω of the control parameter. In particular, we delineate
the domain of validity of the Ω2/3 scaling law predicted for one-dimensional systems. At high sweeping
frequency, we show the appearance of another asymptotic scaling low in Ω1/2. Thereafter, we analyse
the global evolution of the hysteresis loop induced by these processes. At low frequency, a Ω2/3 scaling
law is retrieved, whereas at high frequency, the dynamical behaviour is shown to strongly depend on the
particular shape of the bistability curve.

PACS. 42.65.−k Nonlinear optics – 42.65.Pc Optical bistability, multistability, and switching

If the static features of bistable systems are well es-
tablished [1], their dynamical behaviours present some as-
pects relatively little known and subject to controversy [2].
It is the case of the enlargement of the hysteresis cycle
of bistable systems submitted to a sweeping of one con-
trol parameter. Several studies of this phenomenon, both
in deterministic (optical bistability) [3–5] and stochastic
(magnetic hysteresis) [6–11] cases, have been performed
leading to a scaling law giving the evolution of the hys-
teresis loops area as Y α0 Ω

β . Y0 and Ω are, respectively,
the amplitude and the frequency of the control parame-
ter modulation. The most interesting study carried out in
this research area is a one-dimensional theory of dynam-
ical hysteresis formulated by P. Jung et al. In this work,
the authors show that the shift of the switching points and
the hysteresis loops area scale as the two-thirds power of
the sweeping frequency, in accordance with experimental
results involving a bistable semiconductor laser [3]. In a
multi-dimensional laser system, A. Hohl et al. examined
scaling law of the bistable injected laser above and below
threshold [4]. They demonstrated that the scaling expo-
nent β is equal to 2/3 when the laser becomes bistable,
the injected field being larger than the threshold. How-
ever, experiments [4,5] show that β decreases from 2/3
to much lower values when the sweeping frequency range
increases. The origin of these behaviour remains not un-
derstood in so far as all the previous works mainly focus
on the limit of relatively low sweeping frequencies.
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In this paper, we investigate the hysteresis dynamics of
an optical bistable device involving three dynamical vari-
ables on a much wider domain of sweeping frequency. In
particular, we try to delineate the domain of validity of
the Ω2/3 scaling law predicted for one-dimensional sys-
tems [3]. The dynamics of the up- and down-switching
processes and the global evolution of hysteresis loop area
are analysed. The influence of the characteristic time con-
stants of the system on its dynamics is discussed.

The experiments were performed at a millimetre wave-
length (λ = 3.5 mm). The experimental set-up, adapted
from the arrangement extensively described in [12], con-
sisted of a 23 m long waveguide Pérot-Fabry cavity filled
with HC15N gas at low pressure. The source and the cav-
ity were tuned to the frequency of the J = 0 → 1 ro-
tational line of HC15N, which behaves as a saturable ab-
sorber (purely absorptive bistability). The sweeping of the
input power is achieved by monitoring a PIN diode mod-
ulator. The output variable X and the control parameter
µ are, respectively, the power transmitted by the cavity
and the voltage applied to the modulator.

At low sweeping frequencies, when the system reaches
a limit point A or B (see Fig. 1b), the trajectory of the
bistable device in the plane (µ,X) jumps from one stable
branch to another one giving rise to a static (or adia-
batic) hysteresis loop (Fig. 1 a and b, (e)). If we keep un-
changed the sweeping (frequency and amplitude) and in-
crease the pressure, the static hysteresis width (µA − µB)
increases. Indeed the absorber saturation is reached for
intra-cavity fields becoming higher and higher (Fig. 1 a, b,
(e)) [12]. As the gas pressure considerably alters the static
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Fig. 1. Experimental evolution of the bistability curve versus
the sweeping frequency of the input parameter for (a) low gas
pressure (0.35 mTorr) and (b) high gas pressure (0.5 mTorr).
Curves (e) obtained at 0.1 Hz give a good approximation of
the static loop. Curves (f) and (g) are, respectively, obtained
at 100 Hz and 500 Hz.

characteristic of our bistable device, we can conjecture
that it plays a role in its dynamic. We have studied the
evolution of the hysteresis loop characteristics (switching
points position and loop area) versus the sweeping fre-
quency for different gas pressure. In this experiment, a
sinusoidal modulation signal is applied to the modulator
in addition to a bias current. The amplitude of each of
them is adjusted in order to modulate the input power
from zero to its maximum available value. The sweeping
frequency varies from 10 Hz to 2000 Hz.

Due to the experimental limitations, the gas pres-
sure actually reachable varies from 0.3 to 0.7 mTorr.
At lower pressure, the bistable domain vanishes whereas
for pressure larger than 0.7 mTorr the frustration phe-
nomenon [13] appears at high sweeping frequencies and
strongly modifies the loop shape. Despite the narrowness
of our experimental pressure range, it has been possi-
ble to show an indisputable influence of the pressure on
the hysteresis dynamics. Figure 1 shows the evolution of
the hysteresis loop versus the sweeping frequency for low
(Fig. 1a) and high pressure (Fig. 1b). Increasing the driv-

Fig. 2. Experimental evolution of the up-switching delay ver-
sus the sweeping frequency for different pressures (log-log plot).
Pressure = (a) 0.35 mTorr, (b) 0.45 mTorr, (c) 0.55 mTorr,
and (d) 0.65 mTorr. The straight lines are obtained by a least-
square fit.

ing frequency, the hysteresis loop becomes larger since the
switching points are delayed (Fig. 1 a, b, (f), (g)) [3].

As in [5], the definition of the up-switching points (µC)
is different from the criterion used in [3]. In this work,
the switching point is defined as the value of the input
control parameter for which the output variable is equal
to the ordinate XA of the limit point A. In our system,
the switching point is defined as the control parameter
for which the output variable is equal to (XA + XD)/2
(XD is the ordinate of the point D of the upper branch
whose abscissa is µA (Fig. 1 b, (e)). The choice of this
criterion is imposed by the fact that our bistable system
involves three dynamical variables. Indeed, for relatively
high sweeping frequencies, the numerical simulations on a
three-dimensional model have shown that the trajectories
observed during the forward sweep can cross the lower
branch of the bistability cycle and reaches XA before the
control parameter reaches µA. In addition, experimentally
XA is of the same order than the experimental noise. In
the following we will see that, as indicated in reference [5],
the criterion for the switching point slightly modifies the
value of the exponent β obtained for a given pressure.
Nevertheless, the global evolution of β with pressure does
not significantly depend on the criterion in the condition
of our experiments and simulations.

Figure 2 shows, in log-log plot, the evolution of the
switching delay (µC − µA) versus frequency for different
gas pressures in the case of the up-switching process. The
straight lines are obtained by a least-square fit. The ab-
scissa µA of the turning point A is first approximated by
the value of µC measured at very low sweeping frequency
(Ω/2π = 0.1 Hz) and then slightly adjusted in order to
achieve the best fit. The slope of the straight lines gives
the exponent β characterising the evolution of the switch-
ing delay versus the sweeping frequency. The evolution of
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Fig. 3. Evolution of the scaling law exponent β versus the gas
pressure for the up-switching process: experimental result.

β versus the pressure is plotted in Figure 3. The errors on
β, equal to three times the standard deviation given by
the fit, are close to 0.02. This value is much smaller than
the variation of β observed in the figure. β clearly depends
on the gas pressure and increases from 0.56 to 0.65 when
the pressure increases from 0.35 mTorr to 0.65 mTorr. Let
us emphasise that the value of β obtained for higher gas
pressure is very close to the theoretical value 2/3 predicted
in the one-dimensional model [3]. In the particular case of
our bistable system, the ordinate XB of the turning point
B is too low to allow precise measurement of the down-
switching point positions.

For numerical simulation, our bistable device has been
modeled by an equivalent ring cavity [12] of twice length
with two identical mirrors filled with a homogeneously
broadened two-level medium. Limiting our study to the
purely absorptive bistability [14], we can expect that in
our experiments, the dynamics of our system involves only
one mode of the cavity. Consequently, a single mode model
in the plane-wave approximation should provide a good
basis for the theoretical description of our experiments.
The Maxwell-Bloch equations that govern the dynamics
of systems with saturable absorber then write

τph
dF

dt
= Y − F − 2CP ,

T2
dP

dt
= FD − P ,

T1
dD

dt
= FP +D − 1 . (1)

F is the normalised slowly varying envelope of the intra-
cavity field, defined by F = 2πνr

√
T1T2, where νr is the

Rabi frequency of this field. The input field is defined by
Y = 2πνri√

T

√
T1T2, where νri is the Rabi frequency of the

input field and T the mirror transmittivity. D and P are
the normalised slowly varying envelopes of the population
difference and of the molecular polarisation, respectively.
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Fig. 4. Evolution of the exponent β with pressure obtained
by numerical simulation in the conditions of Figure 3. Cross:
down-switching process; Dot and circle: up-switching process
(Dot and circle, respectively, correspond to two different crite-
ria for switching point).

T2 and T1 are the relaxation times of the polarisa-
tion and population difference, respectively. The relax-
ation mechanism of the rotational transitions is essentially
collisional and may be generally characterised by a unique
relaxation time (T2 = T1) inversely proportional to the
pressure and equal to 7 µs at 1 mTorr. The cavity pho-
ton lifetime τph is directly linked to the cavity mode width.
C = αL/2(1−R) = 200 is the bistability parameter where
α is the power absorption coefficient of the absorber, R is
the reflection coefficient of the cavity mirrors and L is the
Fabry-Perot cavity length. R and T have been measured
and are respectively equal to 0.96 and 0.015 (R+ T �= 1).
As in reference [12], α is taken equal to 0.8 m−1. The in-
put field is sinusoidally swept from zero to Y0 as Y = Y0
(1 − cosΩt)/2. Unfortunately, contrary to reference [12],
the calculated values of the static cycle width (in unit of
µA) are 1.5 time larger than those measured in experi-
ments. This discrepancy between experiment and theory
is mainly due to the inhomogeneous broadening linked
to the Doppler effect which noticeably influences the gas
transmission at our working pressure.

In the numerical calculations, the input field Y is taken
as the control parameter and the conditions are as close
as possible to the experimental one for which the maxi-
mum of input power remains fixed whatever the value of
the pressure. In these conditions, the value of the reduced
parameter Y0 evolves as the inverse of the pressure. Con-
trary to the experiments, the analysis of the dynamics near
the down-switching point B (Fig. 1b) is feasible. Figure 4
shows the evolution of the exponent β versus pressure for
the two switching processes. As in experiments, the values
of β are obtained by a least-square fit, but the parame-
ter µA (µB for the down-switching process), analytically
known, is not adjusted. The error bars correspond to three
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Fig. 5. Evolution of the switching delay versus the normalised
sweeping frequency (log-log plot). The straight lines indicate
the asymptotic behaviours. Their slopes are, respectively, equal
to 2/3 (full line) and 1/2 (dashed line).

standard deviations. For the up-switching, the evolution
of β is similar to that observed in the experiments. In
the range 0.1 to 0.8 mTorr, β increases with the pressure
from 0.53 to 0.62. These values are smaller than the ex-
perimental one but the deviations do not exceed twice the
experimental errors. The theoretical value 0.66 is reached
for higher pressures and lower sweeping frequencies. This
difference between experiments and numerical simulations
could be imputable to the roughness of the theoretical
model and also to the non-linearity of the input modula-
tion which can reduce the sweeping velocity in the vicinity
of the turning point A for high pressures. Let us point out
that the values of β marked by circles in Figure 4 are ob-
tained by using the value (XA + XD)/8 as criterion for
the switching point. The modifications, induced by this
change of criterion, are of the same order of magnitude
as the errors. The evolution of β is not significantly mod-
ified, the theoretical value 2/3 is only reached for lower
frequencies.

Contrary to the up-switching process, the exponent
β for the down-switching remains close to the theoretical
value 2/3 and does not depend on the pressure. It appears
therefore that the switching dynamics of our system de-
pends on the considered switching process. In the vicinity
of the turning point A where the intra-cavity field is close
to 0, the dynamics is dominated by the population differ-
enceD [15] and the characteristic time is T1. The evolution
of the exponent β evidenced both experimentally and nu-
merically, simply indicates that as the pressure decreases,
T1 increases and the normalised sweeping frequency ΩT1
becomes higher and higher. In this way, the bistable sys-
tem leaves progressively the validity domain of the one-
dimensional scaling law (β = 2/3). At high normalised fre-
quencies (low pressures), the exponent β strongly depart
from the theoretical value 2/3. This behaviour is in good
agreement with the experimental results of reference [4],
which show that the scaling exponent β decreases from
0.62 to 0.52 when the upper limit of the sweeping fre-

quency domain increases. In order to precise the evolu-
tion of β at highest normalised sweeping frequency, we
have undertaken another series of numerical simulations
for which the reduced parameter Y0 is held constant and
is twice the value of the input parameter Y at the turning
point A. The normalised sweeping frequency (ΩT1) is var-
ied in a wide domain (2× 104 factor). The corresponding
evolution of the switching delay is graphed in Figure 5.
At low sweeping frequency, we retrieve the 2/3 exponent
law (full line), whereas the curve shows an other asymp-
totic behaviour at high normalised frequencies. The delay
then evolves as Ω1/2 (dashed line). This last behaviour
can be explained as follows. At high sweeping frequency,
the switching occurs far from the turning point, so that we
can conjecture that it is ruled by a pulse area law [16–18]
and occurs when the area swept by the control parameter
µ (µ = Y here) reaches a value A0 which only depends on
the state of the bistable system at the beginning of the
sweeping. In the frame of the linearised model developed
in reference [3], µ is linearly swept at a velocity v ∼ ΩT1.
The switching then occurs after a time duration t given by

A0 = vt2/2 . (2)

The corresponding value of the control parameter µC
writes

µC = vt+ µ0 , (3)

where µ0 is the initial value of the control parameter.
Equations (2) and (3) lead to

µC − µA =
√

2A0v + µ0 − µA . (4)

It appears that for large value of the sweeping velocity,
the switching delay (µC−µA) evolves as v1/2 i.e. as Ω1/2.
We then retrieve the asymptotic law evidenced by our
numerical simulation. Complementary numerical simula-
tions, performed on the generic one-dimensional model of
reference [3] and using the criterion defined by the authors,
also show the existence of two asymptotic laws, respec-
tively, characterised by β = 2/3 and β = 1/2. These two
laws, evidenced in one- and three-dimensional models are
expected to be valid for any bistable device. Depending on
the characteristics of the bistable system under considera-
tion (time constant and sweeping frequency domain), the
values of β can vary from 0.5 (high normalised frequen-
cies) to 0.66 (low normalised frequencies). For instance,
for a given range of sweeping frequencies, an increase in
the characteristic time constant entails a shift of the nor-
malised frequency range from the domain of validity of the
Ω2/3 scaling law toward that of the Ω1/2 law and there-
fore a decrease of β. This can explain the spread of the
values of β obtained in previous works [4,5].

Concerning the down-switching process in our opti-
cal bistable device, the master variable is the intra-cavity
field [15], the characteristic evolution time is τph and the
normalised frequency Ωτph does not depend on pressure,
so that the exponent β does not significantly vary with
pressure. In addition, for our particular conditions, the
normalised frequencies are small enough to remain in the
validity domain of the Ω2/3 law. Obviously, if we could
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Fig. 6. Evolution, versus pressure, of the exponent β charac-
terising the area enlargement: experimental result.

increase the photon lifetime τph the exponent β would be
smaller.

Except for one-dimensional system, the up- and down-
switching process of bistable systems are generally char-
acterised by different time constants and the evolution of
the switching delay versus the sweeping frequency can dif-
fer from one process to the other. On the other hand, for
a given process the experimental value of the exponent β
of the scaling law could vary from 2/3 to 1/2 according to
the time constant value and the sweeping frequency range
experimentally used.

All the previous behaviours will affect considerably the
dynamics of the hysteresis loop area. The corresponding
experimental results are resumed in Figure 6 in which
the exponent β, characterising the area enlargement, is
graphed versus the pressure. β decreases from 0.9 to ap-
proximately 2/3 when the pressure increases from 0.35 to
0.65 mTorr (Fig. 6). At high pressure (low normalised fre-
quency) the area dynamics is ruled by the theoretical law
predicted in the framework of a one-dimensional model
but our results strongly depart from this law at low pres-
sure (high normalised frequency). In this last condition,
the area enlargement roughly increases linearly with the
sweeping frequency. We claim that this behaviour is linked
to the particular shape of the bistability curve of our de-
vice. Figure 1 shows that the area enlargement is mainly
due to the up-switching point displacement. The increase
of the loop area corresponds to the trapezium limited by
the curves (e) (static hysteresis) and (f) of Figure 1 whose
area ∆A can be written:

∆A = a(µC − µA) + b(µC − µA)2 . (5)

At low frequency (small delay µC − µA) the first term
prevails and ∆A is proportional to Ω2/3. At high sweep-
ing frequency the second term becomes predominating, as
µC − µA is then proportional to Ω1/2, ∆A increases lin-
early with the sweeping frequency Ω. Let us emphasise

that this linear evolution is specific to absorptive optical
bistable systems for which the output variable is nearly
proportional to the input parameter when the system vis-
its the upper branch of its bistability cycle. In fact, the
dynamics of bistable hysteresis area at high sweeping fre-
quencies depend on the particular shape of its character-
istic curve. On the contrary, at low frequencies the Ω2/3

law is expected to hold whatever the bistable device.
In conclusion, our study of the hysteresis dynamics in

an optical bistable system involving three dynamical vari-
ables has shown that this dynamics depends on the na-
ture of the master variable that governs the time evolution
of the system near the limit point. Basically, for a given
sweeping frequency, the characteristic time constant, cor-
responding to this master variable, drives the dynamics.
At low normalised frequencies, the switching delay evolves
as Ω2/3 whereas at high frequency the Ω1/2 scaling law
prevails. On the other hand, the global evolution of the
hysteresis loop area linked to the local evolution near the
turning points follows a Ω2/3 law at low sweeping frequen-
cies, but the scaling law strongly depends on the shape of
the static hysteresis loop at high frequencies.
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